The role of Smads in BMP signaling.
نویسندگان
چکیده
Bone morphogenetic proteins, BMPs, are members of the transforming growth factor-beta (TGF-beta) superfamily, which are implicated in embryogenesis, organogenesis, skeletogenesis, osteogenesis, cellular differentiation and apoptosis by regulating the expression of specific target genes. Recent progresses in studying the BMP signaling reveal that a cytoplasmic protein family, Smad, plays a central role in mediating the biological effects of BMPs. Smad transduces the signal from the cytoplasm to the nucleus where Smad regulates the transcription of the target genes through the direct association with the specific biding elements or with assistance of other transcription factors or co-activators such as p300/CBP. In addition, the signals mediated by Smad are also positively or negatively controlled by cross-talks with other hormone, growth factor or cytokine signalings, thereby modulating the biological actions of BMPs. Moreover, Smad signaling has negative feedback regulations at the cytoplasmic or nuclear level, which are important to restrict or terminate the biological effect of BMPs. Here we provide an overview of recent knowledge about the roles of Smad family in the regulation of BMP signaling.
منابع مشابه
Membrane targeting of inhibitory Smads through palmitoylation controls TGF-β/BMP signaling
TGF-β/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-β/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execu...
متن کاملFine Tuning and Cross-talking of TGF-β Signal by Inhibitory Smads
Transforming Growth Factor (TGF)-β family, including TGF-β, bone morphorgenic protein (BMP), and activn, plays an important role in essential cellular functions such as proliferation, differentiation, apoptosis, tissue remodeling, angiognesis, immune responses, and cell adhesions. TGF-β predominantly transmits the signals through serine/ threonine receptor kinases and cytoplasmic proteins calle...
متن کاملArginine Methylation Initiates BMP-Induced Smad Signaling.
Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the ...
متن کاملCooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads.
Smad ubiquitin regulatory factor (Smurf) 1 binds to receptor-regulated Smads for bone morphogenetic proteins (BMPs) Smad1/5 and promotes their degradation. In addition, Smurf1 associates with transforming growth factor-beta type I receptor through the inhibitory Smad (I-Smad) Smad7 and induces their degradation. Herein, we examined whether Smurf1 negatively regulates BMP signaling together with...
متن کاملDevelopmental expression of Smad1-7 suggests critical function of TGF-beta/BMP signaling in regulating epithelial-mesenchymal interaction during tooth morphogenesis.
Members of the transforming growth factor-beta family (e.g. TGF-beta, BMP and activin) are critical regulators of tooth morphogenesis. The basic TGF-beta signaling engine consists of a receptor complex that activates Smads and a Smad-containing complex that controls transcription of the downstream target genes. Little is known about the expression of endogenous Smads during tooth morphogenesis....
متن کاملBMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation.
Bone morphogenetic protein (BMP) signaling is required for endochondral bone formation. However, whether or not the effects of BMPs are mediated via canonical Smad pathways or through noncanonical pathways is unknown. In this study we have determined the role of receptor Smads 1, 5 and 8 in chondrogenesis. Deletion of individual Smads results in viable and fertile mice. Combined loss of Smads 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 8 شماره
صفحات -
تاریخ انتشار 2003